Discrimination of isotrigon textures using the Rényi entropy of Allan variances.
نویسندگان
چکیده
We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.
منابع مشابه
Discriminating of isotrigon textures
Higher order spatial correlations can capture edge and object relationships. Isotrigon textures are useful for studying our sensitivity to these correlations. We determined human discrimination performance for 18 isotrigon texture types and compared it with outputs from statistical discriminant models. Some of the models employed versions of the Allan Variance in receptive field outputs. Physio...
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کاملLessons from biological processing of image texture
When designing artificial vision systems, it may be useful to examine the solutions 0.5 billion years of biological evolution have produced. Recent studies of human vision; studies of macaque visual cortical function; and behavioural studies of bee vision, all indicate that different species have evolved related approaches for discriminating image textures. This common strategy uses short-range...
متن کاملCorrigendum to “Discriminating isotrigon textures” [Vision Research 41 (2001) 3837–3860]
The publisher regrets that the published version of the above mentioned article contained an error in the article title. The publisher apologises to the authors and readers of the journal for any inconvenience caused.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2008